Maxwell's Equations

Revision as of 18:19, 8 March 2020 by 76.28.40.176 (talk)

Joe Schmoe (b. xxxx)

Title xxxx


$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

This formulation assumes no charge $$\rho=0$$ and $$J=0$$. One common example of these conditions is a vacuum.

$$\nabla \times \mathbf{B} = +\frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = 0$$

Resources:

Discussion: