Maxwell's Equations

From The Portal Wiki
Jump to navigation Jump to search

James Clerk Maxwell (b. 1831)

Maxwell's Equations 1861

In general, Maxwell's equations take the form:

$$\nabla \times \mathbf{B} = \mu_0 \left( \mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

where $$\epsilon_0$$ is the permittivity of free space and $$\mu_0$$ is the permeability of free space.

In the example of an ideal vacuum with no charge or current, (i.e., $$\rho=0$$ and $$\mathbf{J}=0$$), these equations reduce to:

$$\nabla \times \mathbf{B} = \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = 0$$

Note that the speed of light is:

$$c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$$

Resources:

Discussion: