Difference between revisions of "Maxwell's Equations"

From The Portal Wiki
Jump to navigation Jump to search
Line 4: Line 4:




This formulation assumes no charge $$\rho=0$$ and $$J=0$$. One common example of these conditions is a vacuum.
 
: $$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
: $$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$
: $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$
This formulation assumes no charge $$\rho=0$$ and $$J=0$$. One common example of these conditions is a vacuum.
: $$\nabla \times \mathbf{B} = +\frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
: $$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
: $$\nabla \cdot \mathbf{B} = 0$$
: $$\nabla \cdot \mathbf{E} = 0$$


== Resources: ==
== Resources: ==
*[https://en.wikipedia.org/wiki/Maxwell%27s_equations Maxwell's Equations]
*[https://en.wikipedia.org/wiki/Maxwell%27s_equations Maxwell's Equations]
== Discussion: ==
== Discussion: ==

Revision as of 18:19, 8 March 2020

Joe Schmoe (b. xxxx)

Title xxxx


$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

This formulation assumes no charge $$\rho=0$$ and $$J=0$$. One common example of these conditions is a vacuum.

$$\nabla \times \mathbf{B} = +\frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{E} = 0$$

Resources:

Discussion: