Difference between revisions of "Maxwell's Equations"
Jump to navigation
Jump to search
Line 8: | Line 8: | ||
: $$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$ | : $$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$ | ||
: $$\nabla \cdot \mathbf{B} = 0$$ | : $$\nabla \cdot \mathbf{B} = 0$$ | ||
: $$\nabla \cdot \mathbf{E} = | : $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$ | ||
== Resources: == | == Resources: == | ||
*[https://en.wikipedia.org/wiki/Maxwell%27s_equations Maxwell's Equations] | *[https://en.wikipedia.org/wiki/Maxwell%27s_equations Maxwell's Equations] | ||
== Discussion: == | == Discussion: == |
Revision as of 18:15, 8 March 2020
Joe Schmoe (b. xxxx)
Title xxxx
This formulation assumes no charge $$\rho=0$$ and $$J=0$$. One common example of these conditions is a vacuum.
- $$\nabla \times \mathbf{B} = +\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$
- $$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$
- $$\nabla \cdot \mathbf{B} = 0$$
- $$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$