43
edits
m (→Set theory) |
m (→Set theory) |
||
Line 27: | Line 27: | ||
epsilon-relation (member relation); Zermelo-Fraenkel axioms of set theory; Russel's paradox; existence and uniqueness of the empty set (standard textbook proof and formal proof); axioms on the existence of pair sets and union sets; examples; finite unions; functional relation and image; principle of restricted and universal comprehension; axiom of replacement; intersection and relative complement; power sets; infinity; the sets of natural and real numbers; axiom of choice; axiom of foundation. | epsilon-relation (member relation); Zermelo-Fraenkel axioms of set theory; Russel's paradox; existence and uniqueness of the empty set (standard textbook proof and formal proof); axioms on the existence of pair sets and union sets; examples; finite unions; functional relation and image; principle of restricted and universal comprehension; axiom of replacement; intersection and relative complement; power sets; infinity; the sets of natural and real numbers; axiom of choice; axiom of foundation. | ||
definition of maps (or functions) between sets; structure-preserving maps; identity map; domain, target and image; injective, surjective and bijective maps; isomorphic sets; classification of sets: finite and countably and uncountably infinite; cardinality of a set; composition of maps; commutative diagrams; proof of associativity of composition; inverse map; definition of pre-image and properties of pre-images (with proof); equivalence relations: reflexivity, symmetry, transitivity; examples; equivalence classes and quotient set; well-defined maps; construction of | definition of maps (or functions) between sets; structure-preserving maps; identity map; domain, target and image; injective, surjective and bijective maps; isomorphic sets; classification of sets: finite and countably and uncountably infinite; cardinality of a set; composition of maps; commutative diagrams; proof of associativity of composition; inverse map; definition of pre-image and properties of pre-images (with proof); equivalence relations: reflexivity, symmetry, transitivity; examples; equivalence classes and quotient set; well-defined maps; construction of ℕ, ℤ, ℚ, ℝ (natural, integer, rational and real numbers); successor and predecessor maps; nth power set; addition and multiplication of numbers; canonical embeddings. | ||
==Topological spaces== | ==Topological spaces== |
edits