Difference between revisions of "The Road to Reality Study Notes"

Jump to navigation Jump to search
Line 300: Line 300:
The [https://en.wikipedia.org/wiki/Cauchy%E2%80%93Riemann_equations Cauchy-Riemann equations] (to be formally introduced later in chapter 10) allow us to narrow our focus to find a path-specific answer, where the value of the integral on this path is the same for any other path that can be formed from the first by continuous deformation in its domain.  Note that the function <math>\frac{1}{z}</math> has a hole in the domain at the origin, which can prevent a continuous deformation thereby allowing for different answers for the value of the integral depending on the path taken.
The [https://en.wikipedia.org/wiki/Cauchy%E2%80%93Riemann_equations Cauchy-Riemann equations] (to be formally introduced later in chapter 10) allow us to narrow our focus to find a path-specific answer, where the value of the integral on this path is the same for any other path that can be formed from the first by continuous deformation in its domain.  Note that the function <math>\frac{1}{z}</math> has a hole in the domain at the origin, which can prevent a continuous deformation thereby allowing for different answers for the value of the integral depending on the path taken.


Continuous deformation in this sense is defined as [https://en.wikipedia.org/wiki/Homology_(mathematics)#:~:text=When%20two%20cycles%20can%20be,in%20the%20same%20homology%20class. homologous deformation], where parts of the path can cancel each other out if they are traversed in opposite directions. This contrasts with homotopic paths where you may not cancel parts. As a visualization we take the function of 1/z with a homologous path:
Continuous deformation in this sense is defined as [https://en.wikipedia.org/wiki/Homology_(mathematics)#:~:text=When%20two%20cycles%20can%20be,in%20the%20same%20homology%20class. homologous deformation], where parts of the path can cancel each other out if they are traversed in opposite directions. This contrasts with homotopic paths where you may not cancel parts. As a visualization we take the function of <math>\frac{1}{z}</math> with a homologous path:


[[File:Fig 7p3 png.png|thumb|center]]
[[File:Fig 7p3 png.png|thumb|center]]
105

edits

Navigation menu