49
edits
ConceptHut (talk | contribs) |
ConceptHut (talk | contribs) |
||
Line 17: | Line 17: | ||
# [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : $$M$$, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws]. | # [https://en.wikipedia.org/wiki/Spacetime Spacetime] is a [https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold pseudo-Riemannian manifold] : $$M$$, endowed with a [[metric tensor]] and governed by [https://en.wikipedia.org/wiki/Geometry geometrical laws]. | ||
# Over $$M$$ is a [https://en.wikipedia.org/wiki/Vector_bundle vector bundle] : $$X$$, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian] [https://en.wikipedia.org/wiki/Gauge_theory gauge group] : $$G$$. | # Over $$M$$ is a [https://en.wikipedia.org/wiki/Vector_bundle vector bundle] : $$X$$, with a [https://en.wikipedia.org/wiki/Non-abelian_group non-abelian] [https://en.wikipedia.org/wiki/Gauge_theory gauge group] : $$G$$. | ||
# [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of $$(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})$$. $$R$$ and $$\ | # [https://en.wikipedia.org/wiki/Fermion Fermions] are sections of $$(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})$$. $$R$$ and $$\tilde{R}$$ are not [https://en.wikipedia.org/wiki/Isomorphism isomorphic]; their failure to be isomorphic explains why the light fermions are light. | ||
All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. | All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. |
edits