83
edits
Line 17: | Line 17: | ||
<math> 2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 </math> | <math> 2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 </math> | ||
Multiplying these together we also see that | Multiplying these together we also see that: | ||
<math> 2^3 \cdot 2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 </math> | <math> 2^3 \cdot 2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^8</math> | ||
This is known as the additive property of exponentiation. It can be written as: | |||
<math> 2^3 \cdot 2^5 = 2^{3+5} <\math> | |||
Or more generally: | |||
<math> 2^a \cdot 2^b = 2^{a+b} <\math> | |||
== Preliminaries == | == Preliminaries == |
edits