Difference between revisions of "14: London Tsai - The Reclusive Dean of The New Escherians"

Jump to navigation Jump to search
no edit summary
Line 106: Line 106:


00:04:01<br>
00:04:01<br>
'''London Tsai:''' No author, yeah. And it's just, it's just there, and you could study it, and it was infinitely deep. You could pick up any part and you could just keep going, and everything just fit together so nicely, and I just wanted to see more and understand more. And, you know, all the mathematical writing that was on the blackboards, like from the graduate classes and things like that, I wanted to understand what they were about—and they must be representatives of some sort of world that I didn't have access to at the time.
'''London Tsai:''' No author, yeah. And it's just, it's just there, and you could study it, and it was infinitely deep. You could pick up any part and you could just keep going, and everything just fit together so nicely, and I just wanted to see more and understand more. And, you know, all the mathematical writing that was on the blackboards, like from the graduate classes and things like that, I wanted to understand what they were about—and they ''must'' be representatives of some sort of world that I didn't have access to at the time.


00:04:47<br>
00:04:47<br>
Line 182: Line 182:


00:13:47<br>
00:13:47<br>
So for example, behind you right now, there's an amazing painting that I've seen for years—and I think I've actually used it in a talk at Columbia as the cover art for the first slide—of what I assume is Heinz Hopf's famous fibration from the early 1930s. And so it's the series of interlocking partial torii, each of which is filled up by circles, and it's a very impressionistic, but also somewhat rigorous, description of this object that on the Joe Rogan program I said may be the most important object in the universe, because when we talk about physics being ultimately a theory of waves, we want to know, well, what are those waves waves in? What is the analog of the ocean for an ocean wave inside of physics?  
So for example, behind you right now, there's an amazing painting that I've seen for years—and I think I've actually used it in a talk at Columbia as the cover art for the first slide—of what I assume is Heinz Hopf's famous fibration from the early 1930s. And so it's the series of interlocking partial torii, each of which is filled up by circles, and it's a very impressionistic, but also somewhat rigorous, description of this object that on the Joe Rogan program I said may be the most important object in the universe, because when we talk about physics being ultimately a theory of waves, we want to know, well, what are those waves waves ''in?'' What is the analog of the ocean for an ocean wave inside of physics?  


00:14:53<br>
00:14:53<br>
Line 194: Line 194:


00:15:56<br>
00:15:56<br>
J'accuse—well, no, I mean, this is an important link. I guess this is what I'm trying to say, is that you are somehow breaking the secrecy. It's like, you know, Prometheus gave fire to man. Okay, well you are now bringing bundles to the masses. And I think it's fantastic because it allows people to skip the symbolic step, which is usually what leaves them out of participating—at least as observers—of the amazing museum of mathematical finds. Can you talk a little bit about what caused you to do these two works? The principal bundle behind you, which—what do we call this Hopf fibration behind you?
''J<nowiki>'</nowiki>accuse''—well, no, I mean, this is an important link. I guess this is what I'm trying to say, is that you are somehow breaking the secrecy. It's like, you know, Prometheus gave fire to man. Okay, well you are now bringing bundles to the masses. And I think it's fantastic because it allows people to skip the symbolic step, which is usually what leaves them out of participating—at least as observers—of the amazing museum of mathematical finds. Can you talk a little bit about what caused you to do these two works? The principal bundle behind you, which—what do we call this Hopf fibration behind you?


00:16:46<br>
00:16:46<br>
Line 271: Line 271:


00:25:41<br>
00:25:41<br>
'''Eric Weinstein:''' Okay. Let me try another one. [https://en.wikipedia.org/wiki/Roger_Penrose Roger Penrose], who wrote The Road to Reality, is of course a relatively famous person, drew the first copy of the Hopf fibration that I had ever seen. It is strikingly like your own. Have you seen that?
'''Eric Weinstein:''' Okay. Let me try another one. [https://en.wikipedia.org/wiki/Roger_Penrose Roger Penrose], who wrote ''The Road to Reality'', is of course a relatively famous person, drew the first copy of the Hopf fibration that I had ever seen. It is strikingly like your own. Have you seen that?


00:25:58<br>
00:25:58<br>
'''London Tsai:''' I have. I have that book, The Road to Reality. And I have some some of his more recent books as well. But I think the first picture of a Hopf fibration I ever saw was Bill Thurston's, in his Three-dimensional Geometry and Topology.
'''London Tsai:''' I have. I have that book, ''The Road to Reality''. And I have some some of his more recent books as well. But I think the first picture of a Hopf fibration I ever saw was Bill Thurston's, in his ''Three-dimensional Geometry and Topology''.


00:26:14<br>
00:26:14<br>
Line 289: Line 289:


00:26:38<br>
00:26:38<br>
'''Eric Weinstein:''' So Bill Thurston, of course, was famous within mathematics as being a Fields medalist, who contributed to Grisha Perelman's program for solving the Poincare conjecture in dimension 3, proving that any sphere that was sufficiently simple from its algebraic properties had to actually be the 3-dimensional version of the sphere.
'''Eric Weinstein:''' So Bill Thurston, of course, was famous within mathematics as being a Fields medalist, who contributed to [https://en.wikipedia.org/wiki/Grigori_Perelman Grisha Perelman's] program for solving the Poincare conjecture in dimension 3, proving that any sphere that was sufficiently simple from its algebraic properties had to actually be the 3-dimensional version of the sphere.


00:27:03<br>
00:27:03<br>
Line 495: Line 495:


00:47:38<br>
00:47:38<br>
'''London Tsai:''' No, that's a good, that's a great—well, I did a series of talks when I lived in Seattle. So I went to University of Washington, where I knew a couple mathematicians. And it was a series of works I called Demonstrations. It was kind of inspired by da Vinci's scientific drawings, [https://en.wiktionary.org/wiki/dimostrazione ''dimostrazione'']. And so I invited UW mathematicians to supply me with theorems of theirs, and I would attempt to come up with my own interpretation. That was that was a fun project, I got to know a few mathematicians at the UW. And yeah, that sort of collaboration was something I was very interested in, about 10 years ago.
'''London Tsai:''' No, that's a good, that's a great—well, I did a series of talks when I lived in Seattle. So I went to University of Washington, where I knew a couple mathematicians. And it was a series of works I called ''Demonstrations''. It was kind of inspired by da Vinci's scientific drawings, [https://en.wiktionary.org/wiki/dimostrazione ''dimostrazione'']. And so I invited UW mathematicians to supply me with theorems of theirs, and I would attempt to come up with my own interpretation. That was that was a fun project, I got to know a few mathematicians at the UW. And yeah, that sort of collaboration was something I was very interested in, about 10 years ago.


00:48:38<br>
00:48:38<br>
Line 627: Line 627:


00:54:50<br>
00:54:50<br>
'''Eric Weinstein:''' And are you at all familiar with any of these attempts to push math, and reverence for math, out to the general public that are somewhat off of the direct depiction? I don't know if you've ever seen my friend [https://en.wikipedia.org/wiki/Edward_Frenkel Edward Frenkel's] short film Love and Math. And then he wrote a book.
'''Eric Weinstein:''' And are you at all familiar with any of these attempts to push math, and reverence for math, out to the general public that are somewhat off of the direct depiction? I don't know if you've ever seen my friend [https://en.wikipedia.org/wiki/Edward_Frenkel Edward Frenkel's] short film ''Love and Math''. And then he wrote a book.


00:55:15<br>
00:55:15<br>

Navigation menu