Difference between revisions of "A Portal Special Presentation- Geometric Unity: A First Look"

Jump to navigation Jump to search
no edit summary
Line 448: Line 448:
''[https://youtu.be/Z7rd04KzLcg?t=5168 01:26:08]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5168 01:26:08]''<br>
So, if we also have the gauge group, but we think of that instead as a space of \(\sigma\) fields, what if we take the semi-direct product at a group theoretic level between the two and call this our group of interest?
So, if we also have the gauge group, but we think of that instead as a space of \(\sigma\) fields, what if we take the semi-direct product at a group theoretic level between the two and call this our group of interest?


[[File:GU Presentation G semidirect.jpg|center]]
[[File:GU Presentation G semidirect.jpg|center]]


''[https://youtu.be/Z7rd04KzLcg?t=5185 01:26:25]''<br>
''[https://youtu.be/Z7rd04KzLcg?t=5185 01:26:25]''<br>
Line 460: Line 458:




<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \mathcal{H} \hookrightarrow \mathcal{G} $$</div>
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \tau_{\mathcal{H}} : \mathcal{H} \hookrightarrow \mathcal{G} $$</div>
 
 
<div style="text-align: center; margin-left: auto; margin-right: auto;">$$ \tau_{\mathcal{H^i}} \mathcal{H} \hookrightarrow \mathcal{G} $$</div>




Navigation menu