Difference between revisions of "The Road to Reality Study Notes"

m
Line 332: Line 332:
Now we consider the question, given a function $$f(z)$$ holomorphic in domain $$D$$, can we extend the domain to a larger $$D’$$ so that $$f(z)$$ also extends holomorphically?  A procedure is formed in which we use a succession of power series about a sequence of points, forming a path where the circles of convergence overlap.  This then results in a function that is uniquely determined by the values in the initial region as well as the path along which it was continued.  Penrose notes this [https://en.wikipedia.org/wiki/Analytic_continuation analytic continuation] as a remarkable ‘rigidity’ about holomorphic functions.
Now we consider the question, given a function $$f(z)$$ holomorphic in domain $$D$$, can we extend the domain to a larger $$D’$$ so that $$f(z)$$ also extends holomorphically?  A procedure is formed in which we use a succession of power series about a sequence of points, forming a path where the circles of convergence overlap.  This then results in a function that is uniquely determined by the values in the initial region as well as the path along which it was continued.  Penrose notes this [https://en.wikipedia.org/wiki/Analytic_continuation analytic continuation] as a remarkable ‘rigidity’ about holomorphic functions.


An example of this rigidity and path dependence is ‘our old friend’ $$logz$$.  There is no power series expansion about the origin due to the singularity there, but depending on the path chosen of points around the origin (clockwise or anti-clockwise) the function extends or subtracts in value by $$2πi$$.  See chapter 5 and the euler formula (<math>e^{πi}=-1</math>) for a refresher.
An example of this rigidity and path dependence is ‘our old friend’ $$logz$$.  There is no power series expansion about the origin due to the singularity there but depending on the path chosen of points around the origin (clockwise or anti-clockwise) the function extends or subtracts in value by $$2πi$$.  See chapter 5 and the euler formula (<math>e^{πi}=-1</math>) for a refresher.


== Chapter 8 Riemann surfaces and complex mappings ==
== Chapter 8 Riemann surfaces and complex mappings ==
105

edits