Difference between revisions of "A Portal Special Presentation- Geometric Unity: A First Look"
A Portal Special Presentation- Geometric Unity: A First Look (view source)
Revision as of 17:57, 25 April 2020
, 17:57, 25 April 2020→Unified Content
Line 461: | Line 461: | ||
<p>[01:25:18] This is exactly what we're going to hope is going to save us in this bad trade that we've made because we're going to add fields, content that has the ability to lower the mast and bring the mast back up. We're going to hope to have a theory which is going to create a communitive situation. But then once we've had this idea, we start to get a little bolder. | <p>[01:25:18] This is exactly what we're going to hope is going to save us in this bad trade that we've made because we're going to add fields, content that has the ability to lower the mast and bring the mast back up. We're going to hope to have a theory which is going to create a communitive situation. But then once we've had this idea, we start to get a little bolder. | ||
===== Unified Content ===== | ====== Unified Content ====== | ||
<p>[01:25:43] Let's think about unified content. We know that we want a space of connections, $$A$$ for our field theory, but we know because we have a Levi-Civita connection, that this is going to be equal on-the-nose to ad-valued one-forms $$(\Omega^{1}(Ad))$$ as a vector space. The gauge group represents an ad-valued one-forms. So, if we also have the gauge group ($$\mathcal{H}$$), but we think of that instead as a space of sigma fields. | <p>[01:25:43] Let's think about unified content. We know that we want a space of connections, $$A$$ for our field theory, but we know because we have a Levi-Civita connection, that this is going to be equal on-the-nose to ad-valued one-forms $$(\Omega^{1}(Ad))$$ as a vector space. The gauge group represents an ad-valued one-forms. So, if we also have the gauge group ($$\mathcal{H}$$), but we think of that instead as a space of sigma fields. |