Difference between revisions of "A Portal Special Presentation- Geometric Unity: A First Look"
A Portal Special Presentation- Geometric Unity: A First Look (view source)
Revision as of 17:06, 25 April 2020
, 17:06, 25 April 2020→The Levi-Civita Connection
Line 429: | Line 429: | ||
===== The Levi-Civita Connection ===== | ===== The Levi-Civita Connection ===== | ||
<p>[01:20:01] Okay. What is it that we get for the Levi-Civita connection? Well, not much. One thing we get is that normally the space of connections is an affine space. Not a vector space, but an affine space. Almost a vector space, a vector space up to a choice of origin. But with the Levi-Civita connection, rather than having an infinite plane with an ability to take differences, but no real ability to have a group structure. | <p>[01:20:01] Okay. What is it that we get for the Levi-Civita connection? Well, not much. One thing we get is that normally the space of connections is an affine space ($$\mathcal(A)$$). Not a vector space, but an affine space. Almost a vector space, a vector space up to a choice of origin. But with the Levi-Civita connection, rather than having an infinite plane with an ability to take differences, but no real ability to have a group structure. | ||
<p>[01:20:35] You pick out one point, which then becomes the origin. That means that any connection $$A$$ has a torsion tensor, $$T_A$$, which is equal to the connection, $$A$$ minus the Levi-Civita connection. So we get a tensor that we don't usually have. Gauge potentials are not usually well-defined. They're are only defined up to a choice of gauge. | <p>[01:20:35] You pick out one point, which then becomes the origin. That means that any connection $$A$$ has a torsion tensor, $$T_A$$, which is equal to the connection, $$A$$ minus the Levi-Civita connection ($$\nabula_{LC}$$. So we get a tensor that we don't usually have. Gauge potentials are not usually well-defined. They're are only defined up to a choice of gauge. | ||
<p>[01:21:00] So that's one of the things we get for our Levi-Civita connection, but because the gauge group is going to go missing, this has terrible properties from with respect to the gauge group. It almost looks like a representation. But, in fact, if we let the gauge group act, there's going to be an affine shift. | <p>[01:21:00] So that's one of the things we get for our Levi-Civita connection, but because the gauge group is going to go missing, this has terrible properties from with respect to the gauge group. It almost looks like a representation. But, in fact, if we let the gauge group act, there's going to be an affine shift. |