Difference between revisions of "Theory of Geometric Unity"

no edit summary
Line 22: Line 22:


{| class="wikitable"
{| class="wikitable"
| '''1.''' The Arena (<math> X, g_{\mu\nu}</math>)
| '''1.''' The Arena (\( X, g_{\mu\nu}\))
| <math>R_{\mu\nu} - \frac{1}{2} Rg_{\mu\nu} + \Lambda g_{\mu\nu} =  \left( \dfrac{8 \pi G}{c^4} T_{\mu\nu}\right)</math>
| \(R_{\mu\nu} - \frac{1}{2} Rg_{\mu\nu} + \Lambda g_{\mu\nu} =  \left( \dfrac{8 \pi G}{c^4} T_{\mu\nu}\right)\)
| the Einstein field equations, which describe gravity in the theory of general relativity
| the Einstein field equations, which describe gravity in the theory of general relativity


|-
|-
| '''2.''' <math>G</math> (non abelian)
| '''2.''' \(G\) (non abelian)
<math> SU(3) \times SU(2) \times U(1)</math>
\( SU(3) \times SU(2) \times U(1)\)
| <math>d_A^*F_A=J(\psi)</math>
| \(d_A^*F_A=J(\psi)\)
| the Yang-Mills equation, which governs all other force fields in Yang-Mill-Maxwell theory
| the Yang-Mills equation, which governs all other force fields in Yang-Mill-Maxwell theory
|-
|-
| '''3.''' Matter
| '''3.''' Matter
Antisymmetric, therefore light
Antisymmetric, therefore light
| <math>(i \hbar \gamma^\mu \partial_\mu - m) \psi = 0</math>
| \((i \hbar \gamma^\mu \partial_\mu - m) \psi = 0\)
| the Dirac equation, the equation of motion describing matter particles, or fermions
| the Dirac equation, the equation of motion describing matter particles, or fermions
|}
|}