Difference between revisions of "Jones polynomial"

From The Portal Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 6: Line 6:
'''''Jones polynomial''''' 1984
'''''Jones polynomial''''' 1984


In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable $$ t^{1/2} $$ with integer coefficients.
In the mathematical field of [https://en.wikipedia.org/wiki/Knot_theory knot theory], the Jones polynomial is a [https://en.wikipedia.org/wiki/Knot_polynomial knot polynomial] discovered by [https://en.wikipedia.org/wiki/Vaughan_Jones Vaughan Jones] in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a [https://en.wikipedia.org/wiki/Laurent_polynomial Laurent polynomial] in the variable $$ t^{1/2} $$ with integer coefficients.


==Resources:==
==Resources:==
Line 13: Line 13:


==Discussion:==
==Discussion:==
[[Category:Pages for Merging]]

Latest revision as of 23:29, 19 October 2022

Jones polynomial.png

Vaughan Jones (b. 1952)

Jones polynomial 1984

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable $$ t^{1/2} $$ with integer coefficients.

Resources:

Discussion: