Difference between revisions of "Jones polynomial"
Jump to navigation
Jump to search
(3 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
'''''Jones polynomial''''' 1984 | '''''Jones polynomial''''' 1984 | ||
In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable $$ t^{1/2} $$ with integer coefficients. | In the mathematical field of [https://en.wikipedia.org/wiki/Knot_theory knot theory], the Jones polynomial is a [https://en.wikipedia.org/wiki/Knot_polynomial knot polynomial] discovered by [https://en.wikipedia.org/wiki/Vaughan_Jones Vaughan Jones] in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a [https://en.wikipedia.org/wiki/Laurent_polynomial Laurent polynomial] in the variable $$ t^{1/2} $$ with integer coefficients. | ||
==Resources:== | ==Resources:== | ||
Line 13: | Line 13: | ||
==Discussion:== | ==Discussion:== | ||
[[Category:Pages for Merging]] |
Latest revision as of 23:29, 19 October 2022
Vaughan Jones (b. 1952)
Jones polynomial 1984
In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable $$ t^{1/2} $$ with integer coefficients.