Difference between revisions of "Editing the Graph"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
This is a modified version of the paragraph: | This is a modified version of the paragraph: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:400px; overflow:auto;"> | |||
<div style="font-weight:bold;line-height:1.6;">Edited Graph Version 1</div> | |||
<div class="mw-collapsible-content"> | |||
<blockquote style="max-width:575px; min-width:300px; font-size: 125%; background: #f3f3ff; border-color: #ddd;"> | <blockquote style="max-width:575px; min-width:300px; font-size: 125%; background: #f3f3ff; border-color: #ddd;"> | ||
If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations: | If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations: | ||
Line 18: | Line 20: | ||
All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. | All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the [https://en.wikipedia.org/wiki/Introduction_to_gauge_theory gauge fields], and the fermions are to be interpreted in [https://en.wikipedia.org/wiki/Quantum_mechanics quantum mechanical] terms. | ||
</blockquote> | </blockquote> | ||
</div> | |||
</div> | |||
== Further Resources == | == Further Resources == |
Revision as of 19:09, 2 November 2020
Eric Weinstein suggested several alterations, that have been included below:
- In (ii), “vector bundle X” should be changed to principal G-bundle.
- Also in (ii), “nonabelian gauge group G” should be changed to nonabelian structure group G.
- In (iii), <math>\ R</math> and <math>\tilde R</math> should be (complex) linear representations of G and so they are not equivalent.
- He mentioned that some info was not required, and that the Higgs is remarkably absent.
This is a modified version of the paragraph:
Edited Graph Version 1
If one wants to summarise our knowledge of physics in the briefest possible terms, there are three really fundamental observations:
- Spacetime is a pseudo-Riemannian manifold $$M$$, endowed with a metric tensor and governed by geometrical laws.
- Over $$M$$ is a principal bundle $$P_{G}$$, with a non-abelian structure group $$G$$.
- Fermions are sections of $$(\hat{S}_{+} \otimes V_{R}) \oplus (\hat{S}\_ \otimes V_{\bar{R}})$$. $$R$$ and $$\bar{R}$$ are not isomorphic; their failure to be isomorphic explains why the light fermions are light.
- The masses of elementary particles are generated through the Higgs mechanism.
All of this must be supplemented with the understanding that the geometrical laws obeyed by the metric tensor, the gauge fields, and the fermions are to be interpreted in quantum mechanical terms.
Further Resources
- Eric Weinstein tweeted about the paragraph here.