Difference between revisions of "Jones polynomial"

From The Portal Wiki
Jump to navigation Jump to search
Line 6: Line 6:
'''''Jones polynomial''''' 1984
'''''Jones polynomial''''' 1984


In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable $$ t^{1/2} $$ with integer coefficients.
In the [[mathematical field of knot theory]], the Jones polynomial is a [[knot polynomial]] discovered by [[Vaughan Jones]] in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a [[Laurent polynomial]] in the variable $$ t^{1/2} $$ with integer coefficients.


==Resources:==
==Resources:==

Revision as of 00:32, 6 March 2020

Jones polynomial.png

Vaughan Jones (b. 1952)

Jones polynomial 1984

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable $$ t^{1/2} $$ with integer coefficients.

Resources:

Discussion: